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Abs:ract

The robustness with respect to the Type I error and the

.power of a proposed test 1?:atistic in testing the conjoint

hypotheses of mean and variability equality were examined in this

simulation study. The conjoint test utilizes the maximum p-value

from separate tests of equality of means and equality of vari-

ability as its p-value to control the Type I error rates. The

number of groups, number of subjects per group, and distribution

shapes were manipulated. Data with equal means and equal vari-

ances, equal means and unequal variances, and unequal means and

equal variances were simulated to obtain the Type I error rates;

whereas data with unequal means and unequal variances were

simulated to obtain the empirical power. Results showed that the

conjoint test yielded low Type I error under all three conditions

across the manipulated variables. The conjoint test provided

"reasonable" power when the sample size per group was "large."
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A Conjoint Test for Testing the Equality of

Mean and Variability in a One-way ANOVA Layout

To deal with the situation where the experimental treatments

are expected to increase the experimental group variability

relative to that of the control group, Brownie, Boos, and Hughes-

Oliver (1990) proposed a modified F statistic (Fmod) to simulta-

neously test the null hypotheses that all the group means and

variances are equal against the alternative hypotheses that not

all the group means are equal and the variability of the experi-

mental groups are greater than that of the control.

Ho: Ac = AM, 02c = CY
2

vs.

Ha: Ac Aexp 02e
a2exp

where c denotes the control group, exp denotes the experi-

mental group, and 1 5 p 5 m.

The test statistic Brownie, et al. (1990) proposed has the

same basic format as an F test in ANOVA. It differs in that it

uses the variance of the control group in place of the usual

within group mean square, and the referent distribution is F with

k-1 and nc-1 degrees of freedom, where k is the number of groups

and nc is the number of subjects in the control group.

Fmod = (Eni(xi-x. . ) 2/ (k-1 ) /S2c -> F (k- 1 , nc-1)

They claimed that this Fmod test would be more powerful and

robust with respect to Type I error than the regular F test when

the variability of the treatment groups are expected to increase
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due to the treatments, even when the population normality can not

be assumed.

Some researchers (Blair & Sawilowsky, 1993a, 1993b, 1994)

argued that the test statistic proposed by Brownie et al. (1990)

is not robust with respect to Type I error when the population

normality is not attainable. Simulation studies (Blair & Sawilo-

wsky, 1993a, 1993b) showed that the Fmod test tends to yield

higher Type I error rate when the population distribution devi-

ates from normal. Blair and Sawilowsky (1994) then proposed

modifications to the Fmod test so that the test would offer

powerful and robust results even when the population distribution

is not normal. One of the two modifications, the pFmod test, is

of interest in the present paper. Testing the same null and

alternative hypotheses as described above for the Fmod test, the

Fmod value woulot be compared to a permuted referent distribution

to obtain its p-value instead of using the F distribution.

pFmod = [Eni(xi-x. . )2/(k-1.) ] /S2c -> permuted distribution

The pFmod was shown to be more powerful and robust with respEct

to Type I error than the Fmod test when population distribution

is not normal (Blair & Sawilowsky, 1994).

Given the form of the test statistic, both the Fmod test

proposed by Brownie et al. (1990) and the pFmod test proposed by

Blair and Sawilowsky (1994) should yield high rejection rates

when the population means or the variances are different.

Therefore, when obtaining a significant result from the above two

tests it is ambiguous whether the significant result is due to
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the mean difference between the groups, the increased variabili-

ties in the experimental groups, or both. Wisenbaker and Tam

(1995) proposed two tests pFmod(mm) and pFmod(vv) to test the

mean equality and variance equality separately. The pFmod(mm)

and pFmod(vv) also use permutation to estimate the referent

distribution.

Ho: Ac = Aexp vs. Ha: Ac Aexp

pFmod(mm) = E (xi-x..)2 -> permuted distribution

Ho: ec 72p vs. Ha: ec < a2p

pFmod(vv) = E S2i/k S2c -> permuted distribution

By testing the null hypotheses separately, they (Wisenbaker &

Tam, 1995) argued, the results would provide a clearer under-

standing of the situation at hand. In addition, the two tests

were also robust with respect to Type I error.

This paper examined the same joint hypotheses but proposed a

different approach to determining rejection (or acceptance) of

the null hypotheses. The alternative hypotheses are the same as

the ones Brownie et al. (1990) and Blair and Sawilowsky (1994)

tested:

Ha: the o Ae,m AND 130.2c 0.2exp

But the null hypotheses are the negation of the alternative

hypotheses. That is:

Ho: Ac = Aen, OR 02p

There are three ways to satisfy the null hypotheses: (a) means

are equal and variances of the experimental groups are smaller

than or equal to that of the control group, or (b) means are
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unequal but the variances of the experimental groups are smaller

than or equal to that of the control group, or (c) means are

equal but the variances of the experimental groups are greater

than that of the control group. The proposed conjoint test

(conjoint) takes the maximum p-value of pFmod(mm) and pFmod(vv)

as its p-value. This conjoint test should provide a relatively

conservative approach to testing the conjoint hypotheses but

would have control on the Type I error rate when the null hypoth-

eses were partially true.

This study investigated the robustness with respect to Type

I error and power of the tests described above. The methods and

results are presented below.

Method

The Statistical Analysis System (SAS) Version 6.08 procedure

PROC IML wa.s used in simulating the data. The pseudo-number

generators in the SAS language NORMAL, TINV, CINV, and RANEXP

were used to generate random numbers from the normal, student t,

chi-squared, and exponential distributions, respectively. The

programs were run on the Time Sharing Option (TS()) mainframe

system.

Data were simulated for the combinations et conditions: (a)

the number of groups: k=2, 4, 6, 8, and 10, (b: the number of

subjects per group: n=10, 20, 40, and 80, and (c) the distribu-

tion shapes: normal, t with 3 df, chi-squared with 1 df, and

exponential. Each of the 5 x 4 x 4 conditions were simulated for

(a) equal mean and equal variance, (b) equal mean and unequal
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variance, (c) unequal mean and equal variance, and (d) unequal

mean and unequal variance. The scale difference (unequal vari-

ance) was created so that the variances of the experimental

groups weie twice that of the control group. The mean differenc-

es (unequal mean) were created so that the largest difference

between the control and the experimental is la with equal dis-

tances between the experimental groups. Nominal levels were set

at .05 and .01.

Two hundred replications were generated using SAS IML and

the pseudo-number generators for each of the combination of

conditions as described above. Fmod, pFmod, pFmod(mm), pFmod(vv)

were calculated on each replication of the generated sample data.

For reference purposes, regular F statistic was also computed.

P-values for the regular F and Fmod were obtained by comparing

the calculated test statistic values to their appropriate F

distributions. The original sample data were then permuted 500

times yielding permuted pFmod, pFmod(mm), and pFmod(vv) values.

The pFmod, pFmod(mm), and pFmod(vv) values from the original

sample were then compared to their permuted counterparts. The

proportions of permuted values greater than or equal to the

original values were the p-values for pFmod, pFmod(mm), and

pFmod(vv). The maximum p-values of the pFmod(mm) and pFmod(vv)

became the p-values of the conjoint statistic. Results were

written to external files for further analyses. See Appendix A

for an example program.
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The proportions of p-values greater than or equal to the

nominal levels were calculated for the Fmod, pFmod, and conjoint

tests. Mixed model ANOVAs using the proportions of p-values of

the Fmod, pFmod, and conjoint stat';tics were conducted to test

the differences among the tests in the various combinations of

conditions. Nominal level of .05 was used for each mixed model

ANOVA.

Results

The results regarding the robustness with respect

error and power were

Type I Error Rates

The rejection rates

1990), pFmod test (Blair

test were compared using

reported below.

to Type I

of the Fmod test (Brownie, et al.,

& Sawilowsky, 1994), and the conjoint

the mixed model ANOVA where the distri-

bution shape, number of groups, and number of subjects per group

were the between subject factors and the statistical test was the

repeated measure factor. Three data conditions were considered

to iield Type I error rates: (a) both means and variances were

equal, (b)

means were

rates were

Means

means were unequal and variances were equal, and (c)

equal and variances were unequal. The Type I error

described for the three conditions separately below.

and variances were equal. The regular F test fluctu-

ated around the nominal levels (.05 and .01) as expected. The

mixed model ANOVA revealed significant complex interaction

effects among the Fmod, pFmod, and conjoint tests. The mixed

model ANOVA results were reported in Table 1. Because the

`,1
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results at the two nominal levels were similar, only results from

the .05 level were reported. A closer look at the Type I error

rates found that pFmod, as the regular F test, fluctuated around

the nominal levels across all conditions, whereas Fmod fluctuated

around the nominal levels only when the distribution shape was

normal. As the distribution shapes deviated from normal, Fmod

yielded liberal results as was found in the previous studies

(Blair & Sawilowsky, 1993a, 1993b, 1994; Wisenbaker & Tam, 1995).

The conjoint test yielded very conservative results as extreme as

rejection rate = 0.00 when the nominal level was set at .01. The

Type I error rates for Fmod, pFmod, and conjoint tests were

reported in Table 2. Because of the similarity in the results,

the following conditions were selected to be reported: k=2, 6,

10; n=10, 20, 80; distribution = normal and exponential.

Unequal means and equal variances. The regular F test

yielded high rejection rates as would be expected. The mixed

model ANOVA found significant complex interaction effects (see

Table 3). Both Fmod and pFmod had rejection rates higher than

the nominal levels. Fmod and pFmod had similar rejection rates

when the distribution shape was normal. As the distribution

shapes deviated from normal, Fmod became more liberal than pFmod.

The conjoint test yielded conservative rejection rates across

conditions. Type I error rates were reported in Table 4.

Equal means and uneaual variances. The regular F test had

rejection rates fluctuating around the nominal levels as expect-

ed. Again, significant complex interaction effects were found
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between Fmod, pFmod, and conjoint tests (Table 5). Both Fmod and

pFmod yielded rejection rates higher than the nominal levels. In

general, the rejection rates of Fmod were higher than those of

pFmod. The rejection rates of Fmod was similar to those of pFmod

when the distribution shape was normal. As the distribution

shapes deviated from normal, Fmod had more liberal rejection

rates. The conjoint test still yielded very conservative rejec-

tion rates across conditions. Type I error rates were reported

in Table 6.

In sum, Brownie et al.'s (1990) Fmod yielded liberal results

when the distribution shapes were not normal and when the null

hypotheses were only partially true. Blair and Sawilowsky's

pFmod (1994) was robust with respect to Type I error rate when

the distribution shapes were not normal, but it yielded liberal

results when the null hypotheses were only partially true. On

the contrary, the conjoint test maintained conservative results

when the null hypotheses were both and partially true.

Power

Results from the data condition where both means and vari-

ances were unequal provided information on how the conjoint test

fare when both null hypotheses were ialse. See Table 7 for the

empirical power at the nominal level .05. The Fmod and pFmod

tests were not included in the discussion of power because of

their liberal Type I error performance.

Several observations were obtained regarding the empirical

power of the conjoint test at the nominal level of .05: (a) the
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power tend to increase when the number of groups increased; (b)

power tend to increase when the number of subjects per group

increased; (c) the power was not "high" when the number of

subjects per group was small (20 or less); and (d) the distribu-

tion shapes also seemed to influence power, with normal distribu-

tion yielding the best power.

Discussion

One of the most striking results from our investigation of

the actual Type I error rates associated with the tests examined

here are the problems associated with the Fmod and pFmod methods

when dealing with situations where it might be said that the null

hypothesis is "partially" true. In those instances, only the

conjoilit testing procedure we proposed maintained reasonable

control over empirical Type I error rates. The Fmod test yielded

rates as high as .47 while the pFmod test produced rates as high

as .44 when the means were equal and the variances were not equal

and 1.00 for both tests when the means were unequal and the

variances were equal.

It would appear that, contrary to what has been written,

they actually test the null hypothesis that the means are all

equal OR the variances of the experimental conditions are less

than or equal to that of the control condition. Departures from

either of these conditions tend to lead to large values for those

test statistics. To be fair, it may be that the authors are

focused on situatjons where, for very compelling reasons, effects

on means could occur if and only if there were effects on vari-

1 2
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ances. If so, our concerns about their failure to control

adequately for Type I error rates under conditions of "partially"

correct null hypotheses are simply not germane. However, in the

conditions where increase in the experimental group variances did

not lead to changes in the 4roup means (the means were equal and

the variances were unequal), both tests still yielded undesired

liberal Type I error rates.

The conjoint test, on the other hand, has offered a way to

dealing with the possibility that the null hypotheses could be

partially true. Should one of the two null hypotheses were true,

the conjoint test maintains Type I error rates that are accept-

able, though a bit on the conservative side.
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Table 1. Mixed model ANOVA for Fmod, pFmod, and conjoint tests
at nominal level .05 when both means and variances were equal.

Source: Method
DF Type III SS Mean Square F Value Pr > F
2 .41 .21 1042.15 .0001

Source: Method*Dist
DF Type III SS Mean Square F Value Pr > F
6 .06 .01 49.15 .0001

Source: Method*K
DF Type III SS Mean Square F Value Pr > F
8 .03 .00 18.71 .0001

Source: Method*N
DF Type III SS Mean Square F Value Pr > F
6 .02 .00 14.95 .0001

Source: Method*Dist*K
DF Type III SS Mean Square F Value Pr > F
24 .01 .00 1.82 .0277

Source: Method*Dist*N
DF Type III SS Mean Square F Value Pr > F
18 .01 .00 2.85 .0009

Source: Method*K*N
DF Type III SS Mean Square F Value Pr > F
24 .00 .00 0.73 .8096

Source: Error
DF Type III SS Mean Square
72 .01 .00

Note: Method=test, Dist=distribution, K=number of groups,
N=number of subjects per group.

4

14
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Table 2. Type I error rates for Fmod, pFmod, and conjoint tests
at nominal level .05 when means and variances were equal.

Normal

Fmod pFmod conjoint

k=2 n=10 .055 .055 .000

n=20 .040 .045 .000

n=80 .035 .040 .010

k=6 n=10 .055 .050 .000

n=20 .055 .055 .000

n=80 .055 .065 .005

k=10 n=10 .080 .080 .005,

n=20 .055 .055 .000

n=80 .070 .050 .005

Exponential

Fmod pFmod conjoint

k=2 n=10 .060 .050 .010

n=20 .080 .060 .005

n=80 .010 .010 .005

k=6 n=10 .135 .065 .000

n=20 .085 .055 .005

n=80 .105 .075 .010

k=10 n=10 .155 .020 .000

n=20 .155 .045 .005

n=80 .100 .050 .000
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Table 3. Mixed model *TOVA for Fmod, pFmod, and conjoint tests
at nominal level .05 wnen means were unequal and variances were
equal.

Source:
DF
2

Source:
DF
6

Source:
DF
8

Method
Type III SS

32.09

Method*Dist
Type III SS

.07

Method*K
Type III SS

.15

Mean Square
16.04

Mean Square
.01

Mean Square
.02

F Value
51449.01

F Value
38.01

F Value
60.34

Pr > F
.0001

Pr > F
.0001

Pr > F
.0001

Source: Method*N
DF Type III SS Mean Square F Value Pr > F
6 2.36 .39 1259.71 .0001

Source: Method*Dist*K
DF Type III SS Mean Square F Value Pr > F
24 .02 .00 2.23 .0049

Source: Method*Dist*N
DF Type III SS Mean Square F Value Pr > F
18 .07 .00 12.35 .00.01

Source: Method*K*N
DF Type III SS Mean Square F Value Pr > F
24 .09 .00 11.88 .0001

Source: Error
DF Type III SS Mean Square
72 .02 .00

Note: Method=test, Dist=distribution, K=number of groups,
N=number of subjects per group.
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Table 4. Type I error rates for Fmod, pFmod, and conjoint tests
at nominal level .05 when means were unequal and variances were
equal.

Normal

Fmod pFmod conjoint

k=2 n=10 .490 .485 .005

n=20 .855 .855 .015

n=80 1.00 1.00 .015

k=6 n=10 .340 .325 .000

n=20 .705 .690 .015

n=80 1.00 1.00 .025

k=10 n=10 .290 .320 .030

n=20 .690 .705 .015

n=80 1.00 1.00 .050

Exponential

Fmod pFmod conjoint

k=2 n=10 .570 .550 .000

n=20 .755 .725 .000

n=80 1.00 1.00 .020

k=6 n=10 .495 .360 .010

n=20 .650 .535 .005

n=80 1.00 1.00 .025

k=10 n=10 .470 .245 .005

n=20 .670 .525 .015

n=80 1.00 1.00 .035
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Table 5. Mixed model ANOVA for Fmod, pFmod, and conjoint tests
at nominal level .05 when means were equal and variances were
unequal.

Source: Method
DF Type III SS Mean Square F Value Pr > F
2 2.87 1.43 3969.47 .0001

Source: Method*Dist
DF Type III SS Mean Square F Value Pr > F
6 .15 .03 70.68 .0001

Source: Method*K
DF Type III SS Mean Square F Value Pr > F
8 .37 .05 129.49 .0001

Source: Method*N
DF Type III SS Mean Square F Value Pr > F
6 .03 .00 13.62 .0001

Source: Method*Dist*K
DF Type III SS Mean Square F Value Pr > F
24 .04 .00 4.38 .0001

Source: Method*Dist*N
DF Type III SS Mean Square F Value Pr > F
18 .01 .00 1.75 .0494

Source: Method*K*N
DF Type III SS Mean Square F Value Pr > F
24 .02 .00 2.85 .0003

Source: Error
DF Type III SS Mean Square
72 .03 .00

Note: Method=test, Dist=distribution, K=number of groups,
N=number of subjects per group.
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Table 6. Type I error rates for Fmod, pFmod, and conjoint tests
at nominal level .05 when means were equal and variances were
unequal.

Normal

ItFmod pFmod conjoint

k=2 n=10 .105 .100 .005

n=20 .115 .110 .015

n=80 .140 .135 .080

k=6 n=10 .240 .230 .005

n=20 .275 .265 .020

n=80 .285 .280 .055

k=10 n=10 .260 .260 .020

n=20 .325 ,325 .030

n=80 .445 .440 .065

Exponential

Fmod pFmod conjoint

k=2 n=10 .120 .075 .010

n=20 .135 .095 .025

=80 .105 .090 .010

k=6 n=10 .265 .105 .000

n=20 .265 .120 .005

=80 .390 .295 .055

k=10 n=10 .335 .105 .000

n=20 .380 .225 .015

n=80 .410 .295 .025
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Table 7. The empirical power at nminal level .05.

Normal X2(1) exponential t(3)

k=2 n=10 .04 .06 .00 .00

n=20 .16 .10 .01 .02

n=40 .50 .17 .03 .12

n=80 .82 .39 .18 .32

k=4 n=10 .06 .03 .02 .02

n=20 .28 .21 .11 .10

n=40 .68 .37 .18 .26

n=80 .94 .61 .35 .62

k=6 n=10 .07 .07 .02 .03

n=20 .40 .13 .09 .17

n=40 .74 .36 .26 .30

n=80 .98 .63 .40 .62

k=8 n=10 .08 .06 .03 .04

n=20 .39 .21 .14 .16

n=40 .81 .44 .29 .40

n=80 .97 .59 .44 .59

k=10 n=10 .09 .07 .01 .04

n=20 .42 .26 .14 .16

n=40 .79 .46 .23 .42

n=80 1.00 .60 .49 .67
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Appendix A

Example program: program created four groups, ten subjects per
group, distributed as chi-squared with 1 df, with unequal group
means, and the variances of the experimental groups are twice of
that of the control group.

************************
** JCL for TSO system **
************************
//CHIB JOB USER=WISENBA,NOTIFY=WISENBA,MSGCLASS=6,TIME=5
//*MAIN LINES=40
//OUT1 OUTPUT DEST=SSS03,COPIES=1
// EXEC SAS6,REGION=4000K
//SASLOG DD SYSOUT=*
//SASLIST DD SYSOUT=6,OUTPUT=*.OUT1
//TEMP DD DSN=&&TEMP,SPACE=(CYL,(30,20)),DISP=(NEW,DELETE),
// UNIT=SYSDA,VOL=SER=UGAKOC
//02 DD DSN=WISENBA.SIMDA(CB10X4D),DISP=SHR
//SYSIN DD *

******************************
** SAS IML to generate data **
******************************
PROC IML;
*** Creating output file ***
CREATE OUTDAT VAR{F PF F_M PBF_M CNTF_M MM CNTF_MM VV CNTF_VV

JOIN};
*** Generate a 10x4 matrix with Os ***
A=J(10,4,0);
*** Matric for creating mean difference ***
MF={0 1 2 3};
MF=SQRT(2) *MF/3;
*** Create a DO loop for 200 replications ***
DO REP=1 TO 200;
*** Generate 10x4 data points that conform to x2(1) ***
M=CINV(UNIFORM(A),1,0);
*** Create the scale difference ***
M[,1]=M[,1]/SQRT(2)+(1-1/SQRT(2));
*** Create the mean difference ***
M=M+REPEAT(MF,10);
*** Begin calculation ***
N=NROW(M);
G=NCOL(M);
NN=N*G;
DFA=G-1;
DFE=NN-G;
GV= (M [Of, ] -M [4- ##2/N) / (N-1) ;
MSE=GV[+] /G;
MSA=((M[:,]-M[:])##2*N) [-1-] / (G-1) ;
F=MSA/MSE;
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PF=1-PROBF(F,DFA,DFE); *** <-- regular F ***
DFB=N-1;
MSC=GV[,1];
F_M=MSA/MSC;
PBF_M=1-PROBF(F_M,DFA,DFB); *** <-- Fmod ***
MM= (M [ ] -M [ : ] ) [ifft] ;

VV=GV[,:1-GV[,1];
CNTF_M=0;
CNTF_MM=0;
CNTF_VV=0;
*** Begin permutation: 500 replications ***
DO J=1 TO 500;
P=SHAPE(M[RANK(UNIFORM(A))],10,4);
PGV=(PN#A-P[+,]##2/N)/(N-1);
PMSA=HP[:,]-13[:])##2*N)[+]/(G-1);
PF_M=PMSA/PGV[,1];
PMM= ( P : -P[:]) [iff] ;
PVV=PGV[,:]-PGV[,1];
IF PF_M>F_M THEN CNTF_M=CNTF_M+1; *** <-- pFmod ***
IF PMM>MM THEN CNTF_MM=CNTF_MM+1; *** <-- pFmod(mm) ***
IF PVV>VV THEN CNTF VV=CNTF VV+1; *** <-- pFmod(vv) ***
END;
PF MM=CNTF MM/500;
PFVV=CNTFVV/500;
JOYN=MAX(P-F7 MM,PF VV); *** <-- conjoint ***
APPEND;
END;
*** End of replication ***
*** Output data ***
DATA _NULL_;
SET OUTDAT;
FILE 02;
PUT F PF F M PBF M CNTF M MM CNTF MM VV CNTF VV JOIN;
// EXEC TS5,COND=(0,NE)
SUBMIT SIMPGM(CB20X4)


